Math 2050, HW 5

- Q1. Let $a \in \mathbb{R}$ and f : [0, a) be a real valued function given by $f(x) = x^4$.
 - (a) Show that f is uniformly continuous.
 - (b) Is the conclusion in (a) still true if a is replaced by $+\infty$? Justify your answer.
- Q2. Let $f : [0, 1] \to \mathbb{R}$ be a real valued function given by $f(x) = x^{1/3}$. (a) Show that f is not a Lipschitz function.
 - (b) Using ε, δ terminology, show that f is uniformly continuous.
- Q3. Let $f: [0, +\infty) \to \mathbb{R}$ be a continuous real valued function.
 - (a) Suppose there is L, k > 0 such that for all x > k, $|f(x)| \le L$. Prove that f is uniformly bounded by showing that there exists $\tilde{L} > 0$ such that for all $x \in [0, +\infty), |f(x)| \le \tilde{L}$.
 - (b) Suppose $\lim_{x\to+\infty} f(x) = \alpha \in \mathbb{R}$, show that f is uniformly continuous on $[0, +\infty)$.
- Q4. Let $f : [0,1] \to \mathbb{R}$ be a real valued function such that f is continuous and $f(x) \notin \mathbb{Q}$ for all $x \in [0,1]$. Show that f must be a constant function.